

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Руководство к циклу лабораторных работ МОДЕЛИРОВАНИЕ ГЕНЕРАТОРОВ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ

Для студентов специальностей 210304 «Радиоэлектронные системы», 210304 «Средства связи с подвижными объектами» всех форм обучения

РТΦ

УДК 621.391.833(076.5)+621.373.001.57(076.5)

Дятлов А. П., Дятлов П. А. Руководство к циклу лабораторных работ «Моделирование генераторов фазоманипулированных сигналов». — Таганрог: Изд-во ТРТУ, 2006. — 32 с.

В руководстве рассматриваются принципы моделирования генераторов фазоманипулированных сигналов на основе использования системы схемотехнического моделирования «Micro-Cap». Исследуются временные, спектральные и корреляционные характеристики фазоманипулированных сигналов.

Руководство предназначается студентам специальностей 210304 «Радиоэлектронные системы» и 210402 «Средства связи с подвижными объектами» очной, заочной и дистанционной форм обучения.

Табл. 4. Ил. 10. Библиогр.: 7 назв.

Печатается по решению редакционно-издательского совета Таганрогского государственного радиотехнического университета.

Рецензент

Ю. Ф. Евдокимов канд. техн. наук, профессор кафедры радиотехнических и телекоммуникационных систем ТРТУ.

- © Таганрогский государственный радиотехнический университет, 2006
- © Дятлов А. П., 2006
- © Дятлов П. А., 2006

1. СОДЕРЖАНИЕ ЦИКЛА РАБОТ

1.1. Моделирование генераторов дискретных манипулированных последовательностей.

1.2. Моделирование генераторов простых фазоманипулированных сигналов.

1.3. Моделирование генераторов сложных фазоманипулированных сигналов с апериодическими манипулирующими последовательностями.

1.4. Моделирование генераторов сложных фазоманипулированных сигналов с периодическими манипулирующими последовательностями.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1. В настоящее время наибольшее распространение получили цифровые методы передачи информации, поскольку они обладают следующими достоинствами по сравнению с аналоговыми методами [1]:

 потенциальной возможностью получения малых вероятностей ошибок передачи и достижения высокой достоверности воспроизведения переданных сообщений путём обнаружения и исправления ошибок;

2) инвариантностью цифровых каналов к эффекту накопления искажений при ретрансляциях, обычно представляющему серьёзную проблему в аналоговых системах связи;

3) простотой и эффективностью объединения многих независимых сигналов в цифровые потоки в многоканальных системах связи;

4) возможностью обеспечения конфиденциальности передаваемых сообщений;

5) гибкостью реализации цифровой аппаратуры на основе использования многообразной унифицированной элементной базы;

6) высоким уровнем эксплуатационных характеристик, например, таких, как надёжность, готовность, энергопотребление, весогабаритные параметры и т. п.

При аналоговой передаче сообщений полезный сигнал является непрерывным (континуальным) и может принимать любое значение в некоторых заданных пределах.

При цифровой передаче сообщений полезный сигнал в канале связи является дискретным, т. е. принимает конечное множество значений. 2.2. В аналоговых средствах радиосвязи (СРС) используются непрерывные сигналы с АМ, ЧМ и ФМ, а в цифровых СРС применяются дискретные сигналы, в которых используется манипуляция по амплитуде (АМн), частоте (ЧМн), фазе (ФМн) и комбинации параметров, например по амплитуде и фазе (АФМн) [2].

Дискретные связные сигналы (СС) реализуются с двух- или многопозиционной манипуляцией и могут иметь как периодический, так и апериодический характер. Примерами периодических дискретных СС являются сигналы, используемые в каналах управления СРС для обеспечения синхронизации или вызова. Апериодические дискретные СС используются в информационных каналах СРС при передаче разнообразных неповторяющихся сообщений.

По характеру спектрального распределения СС подразделяются на узкополосные (простые) и широкополосные (сложные). В простых СС база примерно равняется единице ($B \approx 1$), а в сложных СС база намного больше единицы ($B \gg 1$).

Примерами узкополосных СС являются гармонические сигналы, непрерывные одночастотные сигналы с АМ, сигналы с ЧМ при индексе модуляции $\beta \rightarrow 1$, а также одночастотные дискретные сигналы с АМн и ФМн при использовании апериодической двоичной последовательности.

Примером когерентных широкополосных СС являются одночастотные дискретные сигналы с ФМн (ФМС) при использовании манипулирующих функций в виде периодических кодовых последовательностей, а примером некогерентных широкополосных СС являются многочастотные дискретные ЧМ-сигналы с использованием в качестве элементов простых импульсных сигналов или псевдослучайных последовательностей.

Помехоустойчивость СРС существенно зависит от уровня априорной информации, имеющейся при приёме СС. По этому классификационному признаку СС можно подразделить на *детерминированные* (полностью известные), *квазидетерминированные* (с неизвестными параметрами), *стохастические* (с неизвестным законом формирования).

2.3. При анализе функционирования СРС используют временное, спектральное, корреляционное и статистическое описания СС.

Временное описание физических (действительных) сигналов *S*(*t*) может быть представлено следующим соотношением:

$$S(t) = A(t) \cos \Psi(t) = A(t) \cos \left[\omega_0 t + \theta(t) + \varphi_0\right],$$

где A(t) — огибающая сигнала; $\Psi(t)$ — полная фаза; ω_0 — частота несущей; $\theta(t)$ — составляющая фазы, изменяющаяся во времени; φ_0 — начальная фаза сигнала.

С целью устранения неопределённости при выборе сомножителей A(t) и $\Psi(t)$ каждому действительному сигналу S(t) ставят в соответствие комплексный аналитический сигнал

$$\dot{S}(t) = S(t) + jS_1(t),$$

где $S_1(t)$ — функция, сопряжённая согласно Гильберту с сигналом S(t).

При переходе к показательной форме имеем

$$A(t) = \sqrt{S^2(t) + S_1^2(t)};$$

$$\Psi(t) = \operatorname{arctg} \frac{S_1(t)}{S(t)};$$

$$\dot{S}(t) = A(t) e^{j\psi(t)} = A(t) e^{j[\omega_0 t + \theta(t) + \phi_0]} = \dot{A}(t) e^{j\omega_0 t};$$

$$\dot{A}(t) = A(t) e^{j[\theta(t) + \phi_0]},$$

где $\dot{A}(t)$ — комплексная огибающая сигнала $\dot{S}(t)$.

Это комплексное представление особенно удобно для описания узкополосных сигналов, спектр которых группируется около несущей частоты $\omega_0 >> 2\pi F$, где F — полоса частот, в пределах которой сосредоточен спектр сигнала.

Реальные СС бывают детерминированными и стохастическими, и для них справедливы следующие ограничения:

1) значений сигнала — $|S(t)| < \infty$;

2) мощности и энергии сигнала, т. е.

$$P = \frac{1}{T} \int_{0}^{T} |S(t)|^{2} dt < \infty \text{ M } E = \int_{0}^{T} |S(t)|^{2} dt < \infty;$$

3) эффективной временной протяжённости сигнала

$$T_{\rm c} = \sqrt{\frac{1}{E} \int_{-\infty}^{\infty} t^2 |S(t)|^2} dt < \infty$$

и эффективной ширины спектра

$$F = \sqrt{\frac{1}{E} \int_{-\infty}^{\infty} \omega^2 |\dot{S}(j\omega)|^2 d\omega} < \infty,$$

где $|\dot{S}(j\omega)|$ — амплитудный спектр сигнала.

Для спектрального описания сигналов S(t) используют такие термины, как комплексный, амплитудный, фазовый, текущий, мгновенный и энергетический спектры.

Для непериодических детерминированных аналитических сигналов $\hat{S}(t)$ связь между временными и спектральными представлениями устанавливается на основе прямого преобразования Фурье следующим образом:

$$\dot{S}(j\omega) = \int_{-\infty}^{\infty} \dot{S}(t) e^{-j\omega t} dt; \ \dot{S}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \dot{S}(j\omega) e^{j\omega t} d\omega;$$
$$\dot{S}(j\omega) = |\dot{S}(j\omega)| e^{j\theta(\omega)} = \operatorname{Re} \dot{S}(j\omega) + j \operatorname{Im} \dot{S}(j\omega);$$
$$|\dot{S}(j\omega)| = \sqrt{\left[\operatorname{Re} \dot{S}(j\omega)\right]^2 + \left[\operatorname{Im} \dot{S}(j\omega)\right]^2}; \ \operatorname{Re} \dot{S}(j\omega) = S(j\omega);$$
$$\theta(\omega) = \arg \ \dot{S}(j\omega) = \operatorname{arctg} \frac{\operatorname{Im} \dot{S}(j\omega)}{\operatorname{Re} \dot{S}(j\omega)},$$

где $\dot{S}(j\omega)$ — комплексный спектр; Re $\dot{S}(j\omega)$, Im $\dot{S}(j\omega)$ — реальная и мнимая части комплексного спектра сигнала; $|\dot{S}(j\omega)|$ — амплитудный спектр (модуль комплексного спектра); $\theta(\omega)$ — фазовый спектр (аргумент комплексного спектра); $S(j\omega)$ — спектр действительного сигнала S(t).

Если воспользоваться действительной (тригонометрической) формой обратного преобразования Фурье, то при чётном характере функций $|\dot{S}(j\omega)|$ име-

ем
$$\dot{S}(t) = \frac{1}{\pi} \int_{0}^{\infty} |\dot{S}(j\omega)| \cos[\omega t + \theta(\omega)] d\omega$$

Спектр аналитического сигнала $\dot{S}(j\omega)$ содержит спектральные составляющие только с положительными частотами и связан со спектром действительного сигнала $S(j\omega)$ следующими соотношениями:

$$\dot{S}(j\omega) = \begin{cases} 2S(j\omega) & \text{при } \omega > 0, \\ 0 & \text{при } \omega < 0. \end{cases}$$

С учётом этих соотношений интеграл Фурье имеет следующий вид:

$$\dot{S}(t) = \frac{1}{\pi} \int_{0}^{\infty} \dot{S}(j\omega) \mathrm{e}^{j\omega t} d\omega.$$

Комплексный спектр $\dot{S}(j\omega)$ представляет собой функционал всего закончившегося процесса, а при аппаратурных исследованиях приходится иметь дело с неоконченными на момент измерений процессами. С целью устранения данного несоответствия вводятся понятия текущего спектра $\dot{S}_{T}(j\omega)$ и мгновенного спектра $\dot{S}_{M}(j\omega)$, которые определяются следующим образом:

$$\dot{S}_{\rm T}(j\omega) = \int_{-\infty}^{t} \dot{S}(t) {\rm e}^{-j\omega t} dt \; ; \; \dot{S}_{\rm M}(j\omega) = \int_{t}^{t+T_{\rm c}} \dot{S}(t) {\rm e}^{-j\omega t} dt \; ;$$

где *T*_с — длительность сеанса наблюдения.

При стохастическом характере исследуемых сигналов преобразование Фурье непригодно для анализа спектров в связи с их непредсказуемым изменением во времени. При использовании стационарных случайных сигналов учитывается, что их статистические моменты (математическое ожидание и дисперсия) не изменяются во времени. При этом для спектрального описания таких сигналов можно использовать энергетическую спектральную плотность (спектральную плотность мощности)

$$F(\omega) = \lim_{T \to \infty} \frac{\left| \overline{\dot{S}_{T}(j\omega)} \right|^{2}}{2T},$$

где $|\overline{\dot{S}}_{_{\mathrm{T}}}(j\omega)|^2$ — математическое ожидание квадрата амплитудного спектра реализации случайного сеанса длительностью 2*T*.

Спектральную плотность $F(\omega)$ называют двухсторонним (математическим) энергетическим спектром. При переходе к одностороннему (физическому) спектру $G(\omega)$ необходимо иметь в виду, что

$$G(\omega) = \frac{1}{2\pi} G(f); \quad G(\omega) = \begin{cases} 2F(\omega) & \text{при } \omega > 0, \\ 0 & \text{при } \omega < 0. \end{cases}$$

Степень статистической зависимости значений сигнала в различные моменты времени t_1 и t_2 характеризуется автокорреляционной функцией сигнала $R(t_1, t_2) = R(\tau), \tau = t_2 - t_1$, где τ — временной сдвиг.

Для стационарных случайных эргодических сигналов можно использовать усреднение по множеству реализаций или по времени

$$R(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 p(x_1, x_2) dx_1 dx_2,$$

где x_1 , x_2 — значения сигнала S(t), образуемые в моменты времени t_1 и t_2 ; $p(x_1, x_2)$ — плотность вероятности появления значения x_1 в момент времени t_1 и значения x_2 в момент времени t_2 .

В практике широкое распространение получил алгоритм оценивания автокорреляционной функции сигналов с использованием временного усреднения, который называется в литературе мультипликативным алгоритмом.

Энергетический спектр стационарного случайного сигнала связан с автокорреляционной функцией этого процесса преобразованием Фурье (теорема Винера — Хинчина) следующим образом:

$$F(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j\omega\tau} d\tau; R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-j\omega\tau} d\omega.$$

При переходе от комплексной формы к тригонометрической и от двухстороннего энергетического спектра к одностороннему имеем

$$G(\omega) = 4 \int_{0}^{\infty} R(\tau) \cos(\omega \tau) d\tau; R(\tau) = \frac{1}{2\pi} \int_{0}^{\infty} G(\omega) \cos \omega \tau d\omega.$$

Для обеспечения анализа прохождения аддитивной смеси сигнала и шума через функциональные узлы в СРС целесообразно использовать односторонний энергетический спектр.

2.4. Из дискретных СС наибольшее распространение получили ФМС, что объясняется простотой формирования и обработки таких сигналов, обеспечения большой базы, высокой стабильности когерентной несущей частоты, а также возможностью быстрой перестройки параметров передающего и приемного оборудования.

ФМС в зависимости от особенностей манипулирующих последовательностей (МП) делятся на апериодические $S_a(t)$ и периодические $S_n(t)$ [2]:

$$S_{a}(t) = \sum_{i=1}^{N} U_{m} \operatorname{rect}[t - t_{i}] \cos(\omega_{c}t + \varphi_{c} + \theta_{i}) \quad \text{при} \quad 0 \le t \le NT_{3};$$

 $i \in [1, N]; \quad NT_{3} = T_{\kappa}; \quad N = B_{1}; \quad \operatorname{rect}[t - t_{i}] = \begin{cases} 1 \quad \text{при} \ (i - 1)T_{3} \le t_{i} \le iT_{3}, \\ 0 \quad \text{при} \ (i - 1)T_{3} > t_{i} > iT_{3}; \end{cases}$
 $\theta_{i} = a_{i} \Delta \varphi_{i}; \quad a_{i} \in [-1, 1];$

$$S_{\Pi}(t) = \sum_{\kappa=1}^{M} \sum_{i=1}^{N} U_{\mathrm{m}} \operatorname{rect}[t - t_{i\kappa}] \cos(\omega_{\mathrm{c}}t + \varphi_{\mathrm{c}} + \theta_{i\kappa}) \quad \text{при} \quad 0 \le t \le MNT_{3};$$

$$\kappa \in [1, M]; \quad MNT_{3} = MT_{\kappa} = T_{6}; \quad MN = B_{2};$$

$$\operatorname{rect}[t - t_{i\kappa}] = \begin{cases} 1 \quad \text{при} \quad (i - 1)T_{3} + (\kappa - 1)T_{\kappa} \le t_{i\kappa} \le iT_{3} + (\kappa - 1)T_{\kappa}, \\ 0 \quad \text{при} \quad (i - 1)T_{3} + (\kappa - 1)T_{\kappa} > t_{i\kappa} > iT_{3} + (\kappa - 1)T_{\kappa}; \\ \theta_{i\kappa} = a_{i\kappa}\Delta\varphi_{i\kappa}; \quad a_{i\kappa} \in [-1, 1], \end{cases}$$

где $U_{\rm m}$, $\omega_{\rm c}$, $\varphi_{\rm c}$ — соответственно амплитуда, частота и начальная фаза ФМС; T_{3} , T_{κ} , T_{6} — соответственно длительности элемента, кодового интервала и бита; rect[x] — временное окно; N — количество элементов в кодовом интервале, соответствующее базе B_{1} апериодического ФМС; B_{2} — база периодического ФМС; M — количество кодовых интервалов в бите; θ_{i} — значение угла манипуляции для *i*-го дискрета; a_{i} — *i*-й коэффициент; $\Delta \varphi_{i}$ — величина фазового скачка на *i*-м дискрете; $\theta_{i\kappa}$ — значение угла манипуляции для *i*-го дискрета; $a_{i\kappa}$ — *i*-й коэффициент; $\Delta \varphi_{i}$ — величина фазового скачка на *i*-м дискрете; $\theta_{i\kappa}$ — величина фазового скачка *i*-к-й коэф-

Манипулирующие последовательности для апериодического ФМС обозначаются $\Pi_{a}(t)$, а для периодического ФМС — $\Pi_{n}(t)$ и описываются соотношениями следующего вида:

$$\Pi_{\mathbf{a}}(t-t_{i}) = \sum_{i=1}^{N} a_{i} \operatorname{rect}[t-t_{i}];$$
$$\Pi_{\mathbf{a}}(t-t_{i\kappa}) = \sum_{\kappa=1}^{M} \sum_{i=1}^{N} a_{i\kappa} \operatorname{rect}[t-t_{i\kappa}].$$

Выражения для многопозиционных ФМС можно преобразовать к следующему виду:

$$S_{a}(t) = U_{m} \left[\cos \Delta \varphi_{i} \cos(\omega_{c}t + \varphi_{c}) - \Pi_{a}(t - t_{i}) \sin \Delta \varphi_{i} \sin(\omega_{c}t + \varphi_{c}) \right] \quad \text{при} \quad 0 \le t \le T_{\kappa};$$

$$S_{\Pi}(t) = U_{m} \left[\cos \Delta \varphi_{i\kappa} \cos(\omega_{c}t + \varphi_{c}) - \Pi_{\Pi}(t - t_{i\kappa}) \sin \Delta \varphi_{i\kappa} \sin(\omega_{c}t + \varphi_{c}) \right] \quad \text{при} \quad 0 \le t \le T_{\delta}.$$

Для случая двухпозиционного (бинарного) ФМС, когда $\Delta \phi_i = \Delta \phi_{i\kappa} = \pi/2$, эти выражения принимают вид

$$S_{a}(t) = U_{m}\Pi_{a}(t-t_{i})\sin(\omega_{c}t+\phi_{c})] \quad при \quad 0 \le t \le T_{\kappa};$$

$$S_{n}(t) = U_{m}\Pi_{n}(t-t_{i\kappa})\sin(\omega_{c}t+\phi_{c})] \quad при \quad 0 \le t \le T_{5}.$$

В данном цикле лабораторных работ акцент делается на моделировании двухпозиционных ФМС.

Для простых ФМС апериодическая МП представляет собой псевдослучайную последовательность (ПСП), а периодическая МП — последовательность с меандровым законом изменения.

Для сложных ФМС в качестве апериодической МП часто используются апериодические коды Баркера или М-последовательности, а в качестве периодической МП — периодические коды Баркера или М-последовательности.

Соотношения для расчёта временных, спектральных и корреляционных характеристик МП различного вида приведены в табл. 1, а соотношения для расчёта временных, спектральных и корреляционных характеристик двухпозиционных ФМС различного вида приведены в табл. 2.

Таблица 1

Временное, спектральное и корреляционное представления	
манипулирующих последовательностей	

Типы МП	Представление МП	
	Временное:	
	$\Pi_{1}(t) = \operatorname{A sign}\left[\sin\left(\frac{2\pi t}{T_{\Pi}}\right)\right]; T_{\Pi} = 2T_{\Im} \ \Pi p \mu t_{0} \leq t \leq t_{0} + T_{c};$	
 МП с меандро- 	$T_{\rm c} = NT_{\rm n}; \text{sign}\left[\sin\left(\frac{2\pi t}{T_{\rm n}}\right)\right] = \begin{cases} -1 \text{при} \sin(2\pi t/T_{\rm n}) < 0, \\ 0 \text{при} \sin(2\pi t/T_{\rm n}) = 0, \\ +1 \text{при} \sin(2\pi t/T_{\rm n}) > 0 \end{cases}$	
вым законом изме-	Спектральное (односторонний энергетический спектр):	
нения $\Pi_1(t)$	$G_1(f) = \frac{4A^2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \delta[f - (2n-1)F]; F = 1/T_{\pi}$	
	Автокорреляционная функция:	
	$R_{1}(\tau) = \frac{A^{2}}{2} \sum_{k=1}^{N} \left(1 - \frac{ \tau - (k-1)T_{9} }{T_{9}} \right) \left(1 - \frac{(k-1)}{N} \right) (-1)^{(k-1)}$	
	при $(k-1)T_{9} - T_{9}/2 \le \tau \le (k-1)T_{9} + T_{9}/2$	

	Временное:		
	$\Pi_2(t) = \sum_{i=1}^N Aa_i \operatorname{rect}(t - t_i) \text{при} t_0 \le t \le t_0 + T_c; a_i \in [-1; 1];$		
2. Двоичный код в виле заланной ПСП	$T_{\rm c} = NT_{\rm s};$ rect $(t - t_i) = \begin{cases} 1 \text{ при } t_0 + (i - 1)T_{\rm s} \le t_i \le t_0 + iT_{\rm s}; \\ 0 \text{ при других } t_i \end{cases}$		
$\Pi_2(t)$	Спектральное (односторонний энергетический спектр):		
2(*)	$G_2(f) = 2A^2 T_3 \operatorname{sinc}^2(\pi f T_3)$		
	Автокорреляционная функция:		
	$R_2(\tau) = (A^2/2) (1 - \tau /T_3)$ при $\tau \le T_3$; $R_2(\tau) \rightarrow 0$ при $\tau > T_3$		
	Временное:		
	$A\sum_{j_1}^{9} \operatorname{rect}[t - (j_1 - 1)T_3] при j_1 \in [1, 2, 3, 4, 5, 8, 9, 11, 13];$		
3. МП в виде апе- риолической 13-раз-	$ = \begin{cases} \Pi_{3a}(t) = \\ -A\sum_{j_{2}}^{4} \operatorname{rect}[t - (j_{2} - 1)T_{3}] \operatorname{при} j_{2} \in [6, 7, 10, 12]; \end{cases} $		
рядной кодовой по-	$t_0 \le t \le t_0 + T_{\kappa}; T_{\kappa} = NT_3; N = B_1 = 13$		
следовательности	Спектральное (односторонний энергетический спектр):		
Баркера $\Pi_{3a}(t)$	$G_{3a}(f) = \frac{A^2}{2} T_3 \operatorname{sinc}^2(\pi f T_3)$		
	Автокорреляционная функция:		
	$R_{3a}(\tau) = rac{A^2}{2}(1 - \tau /T_{\mathfrak{I}})$ при $\tau \le T_{\mathfrak{I}}; R_{3a}(\tau) = rac{A^2}{2N}$ при $\tau > T_{\mathfrak{I}}$		
	Временное:		
	$\Pi_{3\pi}(t) = \sum_{k=1}^{M} \Pi_{3a}[t - (k-1)T_{\kappa}] при \ t_0 \le t \le t_0 + T_c;$		
	$T_{\rm c} = T_{\rm b} = MT_{\rm k}; T_{\rm k} = NT_{\rm b}; N = B_1 = 13$		
4. МП в виде перио-	Спектральное (односторонний энергетический спектр):		
дической 13-разряд- ной кодовой после-	$G_{3\pi}(f) = \frac{2A^2T_9}{N} \left[\operatorname{sinc}^2(\pi f T_9) \sum_{n=1}^\infty \delta(f - \frac{n}{T_{\kappa}}) - \frac{1}{T} \delta(f) \right]$		
довательности Бар-	Автокорреляционная функция:		
кера $\Pi_{3\pi}(t)$	$R_{3\pi}(\tau) = \frac{A^2}{2} \sum_{k=1}^{M} \left(1 - \frac{ \tau - (k-1)T_{\kappa} }{T_{2}} \right) \left(1 - \frac{(k-1)}{M} \right)$		
	при $(k-1)T_{\kappa} \le \tau \le (k-1)T_{\kappa} + T_{\mathfrak{H}};$		
	$R_{3\pi}(\tau) = \frac{A^2}{2N}$ при $(k-1)T_{\kappa} > \tau > (k-1)T_{\kappa} + T_{3}$		

 5. МП в виде апе- риодической 7-раз- 	Временное: $\Pi_{4a}(t) = \begin{cases} A \sum_{j_1}^{4} \operatorname{rect}[t - (j_1 - 1)T_{3}] \operatorname{при} j_1 \in [2, 5, 6, 7]; \\ - A \sum_{j_2}^{4} \operatorname{rect}[t - (j_2 - 1)T_{3}] \operatorname{при} j_2 \in [1, 3, 4]; \\ t_0 \le t \le t_0 + T_{\kappa}; T_{\kappa} = NT_{3}; N = B_1 = 7 \end{cases}$	
рядной кодовой М-последователь- ности $\Pi_{4a}(t)$	Спектральное (односторонний энергетический спектр): $G_{4a}(f) = \frac{A^2}{2} T_3 \operatorname{sinc}^2(\pi f T_3)$	
	$\frac{2}{A$ втокорреляционная функция:	
	$R_{4a}(\tau) = \frac{1}{2} (1 - \tau /T_3) \text{ при } \tau \le T_3;$ $R_{4a}(\tau) = \frac{A^2}{2\sqrt{N}} \text{ при } \tau > T_3$	
	Временное: $\Pi_{4\pi}(t) = \sum_{k=1}^{M} \Pi_{4a}[t - (k - 1)T_{\kappa}]$ при $t_0 \le t \le t_0 + T_c;$ $T_c = T_6 = MT_{\kappa}; T_{\kappa} = NT_2; N = B_1 = 7$	
 МП в виде перио- дической 7-разряд- ной кодовой М-пос- 	Спектральное (односторонний энергетический спектр): $G_{4\pi}(f) = \frac{2A^2T_9}{N} \left[\operatorname{sinc}^2(\pi f T_9) \sum_{n=1}^{\infty} \delta(f - \frac{n}{T_{\kappa}}) - \frac{1}{T} \delta(f) \right]$	
ледовательности $\Pi_{4n}(t)$	Автокорреляционная функция: $R_{4\pi}(\tau) = \frac{A^2}{2} \sum_{k=1}^{M} \left(1 - \frac{ \tau - (k-1)T_{\kappa} }{T_{3}} \right) \left(1 - \frac{(k-1)}{M} \right)$	
	при $(k-1)T_{\kappa} - T_{\mathfrak{I}} \le \tau \le (k-1)T_{\kappa} + T_{\mathfrak{I}};$ $R_{4\pi}(\tau) = \frac{A^2}{2\sqrt{N}}$ при $(k-1)T_{\kappa} > \tau > (k-1)T_{\kappa} + T_{\mathfrak{I}}$	

Примечание: А — амплитуда элементов МП; T_3 — длительность элемента; F — частота меандра; T_{Π} — период повторения меандра; t_0 время начала сигнала; $\Pi(t)$ — манипулирующая функция; N количество элементов в МП; T_c — длительность сеанса наблюдения; T_{κ} — длительность кодового интервала; T_6 — длительность бита; M — количество кодовых интервалов в бите.

Временное, спектральное и корреляционное представления двухпозиционных фазоманипулированных сигналов

Типы МП	Представление МП			
	Временное:			
	$S_1(t) = U_{\rm m} \Pi_1(t) \cos(\omega_{\rm c} t + \varphi_{\rm c})$ при $t_0 \le t \le t_0 + T_{\rm c};$			
	$\Pi_1(t) = \text{sign}[\sin(2\pi Ft)]; F = 1/T_{\pi}; T_{\pi} = 2T_{3}$			
	Спектральное (односторонний энергетический спектр):			
 Двухпозицион- ный ФМС с МП по 	$G_{\rm s1}(f) = \frac{4U_{\rm m}^2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \{\delta[f - f_{\rm c} - (2n-1)F] + \frac{4U_{\rm m}^2}{\pi^2} \delta[f - f_{\rm c} - (2n-1)F] \}$			
закону меандра $S_1(t)$	$+\delta[f-f_{c}+(2n-1)F]\}$			
	Автокорреляционная функция:			
	$R_{\rm s1}(\tau) = \frac{U_{\rm m}^2}{2} \sum_{i=1}^{N} \left(1 - \frac{ \tau - 2(i-1)T_{\rm s} }{T_{\rm s}} \right) \left(1 - \frac{(i-1)}{N} \right) \cos \omega_{\rm c} t$			
	при $(i-1)T_{\mathfrak{I}} \le \tau \le iT_{\mathfrak{I}}; T_{\mathfrak{c}} = NT_{\mathfrak{I}} = 2NT_{\mathfrak{I}}$			
	Временное:			
	$S_2(t) = U_{\rm m} \Pi_2(t) \cos(\omega_{\rm c} t + \varphi_{\rm c})$ при $t_0 \le t \le t_0 + T_{\rm c};$			
	$\Pi_2(t) = \sum_{i=1}^N a_i \operatorname{rect}(t - t_i) \text{при} t_0 \le t \le t_0 + T_c; a_i \in [-1; 1];$			
	$T_{\rm c} = NT_{\rm P}$			
2. Двухпозицион-	Спектральное (односторонний энергетический спектр):			
ный ФМС с МП по закону ПСП <i>S</i> ₂ (<i>t</i>)	$G_{s2}(f) = \frac{U_{m}^{2}}{2} T_{3} \operatorname{sinc}^{2}(\pi (f - f_{c})T_{3})$			
	Автокорреляционная функция:			
	$R_{s2}(\tau) = rac{U_m^2}{2} \left(1 - rac{ \tau }{T_s} ight) \cos \omega_c \tau$ при $\tau \le T_s;$			
	$R_{ m s2}(\tau) ightarrow 0$ при $\tau > T_{ m s}$			

	Временное:	
	$S_{3a}(t) = U_{\rm m} \prod_{3a}(t) \cos(\omega_{\rm c} t + \varphi_{\rm c})$ при $t_0 \le t \le t_0 + T_{\kappa};$	
	$T_{\rm \kappa} = NT_{\rm p}; N = B_1 = 13$	
3. Двухпозицион-	Спектральное (односторонний энергетический спектр):	
ный ФМС с МП в виде апериодиче-	$G_{3a}(f) = \frac{U_{\rm m}^2}{2} T_{\rm p} \operatorname{sinc}^2(\pi (f - f_{\rm c}) T_{\rm p})$	
pa $S_{3a}(t)$	Автокорреляционная функция:	
	$R_{3a}(\tau) = \frac{U_{\rm m}^2}{2} \left(1 - \frac{ \tau }{T_{\mathfrak{s}}} \right) \cos \omega_{\rm c} \tau \operatorname{при} \tau \le T_{\mathfrak{s}};$	
	$R_{3a}(\tau) = rac{U_{ m m}^2}{2N}$ при $\tau > T_{ m s}$	
	Временное:	
	$S_{3\pi}(t) = U_{\rm m} \prod_{3\pi}(t) \cos(\omega_{\rm c} t + \varphi_{\rm c})$ при $t_0 \le t \le t_0 + T_{\rm c};$	
	$T_{\rm c} = T_{\rm f} = M T_{\rm \kappa}$	
	Спектральное (односторонний энергетический спектр):	
	$G_{3\pi}(f)=$	
4. Двухпозицион- ный ФМС с МП в виде периодическо- го кода Барке-	$\frac{U_{\rm m}^2 T_{\rm s}}{2N} \left[\operatorname{sinc}^2(\pi (f - f_{\rm c})T_{\rm s}) \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \delta(f - f_{\rm c} - \frac{n}{T_{\rm \kappa}}) + \frac{1}{N} \delta(f - f_{\rm c}) \right]$	
pa $S_{3\pi}(t)$	Автокорреляционная функция:	
	$R_{3\pi}(\tau) = \frac{U_{\rm m}^2}{2} \sum_{k=1}^{M} \left(1 - \frac{ \tau - (k-1)T_{\rm K} }{T_{\rm g}} \right) \left(1 - \frac{(k-1)}{M} \right) \cos \omega_{\rm c} \tau$	
	при $(k-1)T_{\kappa} - T_{\mathfrak{I}} \le \tau \le (k-1)T_{\kappa} + T_{\mathfrak{I}};$	
	$R_{3\Pi}(au) = rac{U_{ m m}^2}{2N}$ при других $ au$	

5. Двухпозицион- ный ФМС с МП в	Временное: $S_{4a}(t) = U_m \Pi_{4a}(t) \cos(\omega_c t + \phi_c)$ при $t_0 \le t \le t_0 + T_\kappa$; $T_\kappa = NT_3$; $N = B_1 = 7$ Спектральное (односторонний энергетический спектр):
виде апериодиче- ской кодовой	$G_{4a}(f) = \frac{U_{\rm m}}{2} T_{\rm s} \operatorname{sinc}^2(\pi (f - f_{\rm c}) T_{\rm s})$
М-последователь-	Автокорреляционная функция:
ности $S_{4a}(t)$	$R_{4a}(\tau) = \frac{U_m^2}{2} \left(1 - \frac{ \tau }{T_3} \right) \cos \omega_c \tau \text{при } \tau \le T_3;$
	$R_{4\mathrm{a}}(\tau) = rac{U_\mathrm{m}^2}{2\sqrt{N}}$ при $\tau > T_{\mathrm{s}}$
	Временное:
	$S_{4\Pi}(t) = U_{\rm m} \Pi_{4\Pi}(t) \cos(\omega_{\rm c} t + \varphi_{\rm c})$ при $t_0 \le t \le t_0 + T_{\rm c};$
	$T_{\rm c} = T_{\rm d} = M T_{\rm \kappa}$
	Спектральное (односторонний энергетический спектр):
6. Двухпозицион-	$G_{4\pi}(f)=$
ный ФМС с МП в виде периодиче- ской кодовой	$\frac{U_{\rm m}^2 T_{\rm s}}{2N} \left[{\rm sinc}^2 (\pi (f - f_{\rm c})T_{\rm s}) \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \delta(f - f_{\rm c} - \frac{n}{T_{\rm K}}) + \frac{1}{N} \delta(f - f_{\rm c}) \right]$
М-последователь-	Автокорреляционная функция:
ности $S_{4\pi}(t)$	$R_{4\pi}(\tau) = \frac{U_{\rm m}^2}{2} \sum_{k=1}^{M} \left(1 - \frac{ \tau - (k-1)T_{\rm K} }{T_{\rm g}}\right) \left(1 - \frac{(k-1)}{M}\right) \cos \omega_{\rm c} \tau$
	при $(k-1)T_{\kappa} - T_{\mathfrak{I}} \le \tau \le (k-1)T_{\kappa} + T_{\mathfrak{I}}; R_{4\mathfrak{I}}(\tau) = \frac{U_{\mathfrak{m}}^2}{2\sqrt{N}}$ при
	других τ

Примечание: U_m — амплитуда радиосигнала; f_c — частота сигнала; φ_c — начальная фаза сигнала; T₃ — длительность элемента (посылки) сигнала; N_к — количество элементов сигнала в кодовом интервале; M — количество кодовых интервалов в одном бите; t₀ — время начала сигнала; B₁ — база сложных апериодических ФМС.

3. ДОМАШНЕЕ ЗАДАНИЕ

3.1. Ознакомиться с особенностями формирования функциональных схем генераторов МП и ФМС на основе системы «Micro-Cap» в соответствии с заданиями, сформулированными в лабораторных работах № 1 — 4.

3.2. В соответствии с заданным вариантом исходных данных произвести расчёты и построить графики временных, спектральных и корреляционных характеристик МП и ФМС.

4. ЛАБОРАТОРНОЕ ЗАДАНИЕ

4.1. Лабораторная работа № 1

«Моделирование генераторов манипулирующих последовательностей»

4.1.1. Целью работы является изучение методов анализа и моделирования временных, спектральных и корреляционных характеристик генераторов манипулирующих последовательностей (ГМП) по законам:

- меандра;
- псевдослучайному;
- Баркера;
- кодовой М-последовательности.

4.1.2. ГМП по закону меандра формирует процесс $\Pi_1(t)$ и может быть реализован в нескольких вариантах.

Первый вариант формирования МП П₁(t) основан на использовании гармонического процесса $U_r(t)$ с частотой $F = 1/2T_3$, который подвергается жесткому ограничению с порогом U_{orp} :

 $\Pi_1(t) = U_{\rm orp} \, \text{sign}[\sin(\pi t/T_3)].$

Структура данного ГМП приведена на рис. 1, где Γ_f — генератор гармонического процесса; Огр — ограничитель.

Рис. 1

Второй вариант формирования МП $\Pi_1(t)$ основан на использовании цифровых генераторов (мультивибраторов и триггеров), варианты реализации кото-

рых приводятся в библиотеке компонентов системы моделирования «Місго-Cap» [4 — 6].

Третий вариант формирования МП $\Pi_1(t)$ может быть основан на использовании независимых источников переменного напряжения (НИПН), описанных в пособиях по системе моделирования «Місго-Сар» [4 — 6].

Независимые источники переменного напряжения (Component \rightarrow Analog Primitives \rightarrow Waveform Sources \rightarrow V [Voltage Source]) обозначаются на схеме V1 (рис. 2) и позволяют создавать входные воздействия разнообразной формы: импульсные, синусоидальные, экспоненциальные, кусочно-линейные, с частотной модуляцией, меандровые последовательности.

Рис. 2

В общем виде импульсный сигнал в окне параметров НИПН задаётся следующим образом:

РULSE $U_1 U_2 t_0 \tau_1 \tau_2 \tau_{\mu} T_{пов}$, где PULSE — оператор системы «Місго-Сар», задающий импульсный сигнал; U_1, U_2 — соответственно начальное и максимальное значения напряжения импульса; t_0 — начало переднего фронта импульса; τ_1 — длительность переднего фронта импульса; τ_2 — длительность заднего фронта импульса; τ_{μ} — длительность плоской части импульса; $T_{пов}$ — период повторения импульсов.

Рассмотрим пример построения ГМП по закону меандра со следующими параметрами: $U_1 = 1$ B; $U_2 = -1$ B; $t_0 = 10^{-5}$ c; $\tau_1 = \tau_2 = 0$ c; $\tau_u = T_3 = 10^{-5}$ c; $T_{\text{пов}} = 2T_3 = 2 \cdot 10^{-5}$ c; $T_{\text{мод}} = 20$ $T_3 = 2 \cdot 10^{-4}$ c, где $T_{\text{мод}}$ — время анализа, задаваемое в системе моделирования «Місго-Сар».

Для задания числовых параметров, функциональных зависимостей и обозначения новых переменных в системе моделирования «Micro-Cap» воспользуемся директивой DEFINE^{*}.

Текстовая директива . DEFINE присваивает произвольному имени числовое значение или функциональную зависимость (формула). Использование тексто-

^{*} Все директивы в системе моделирования «MicroCAP» начинаются с символа «точка».

вой директивы . DEFINE не является строго обязательным, а применяется в целях сокращения записи больших выражений и для удобства редактирования числовых параметров. Директивы в системе моделирования «Micro-Cap» можно помещать в текстовом или графическом окнах редактирования (переход между этими окнами осуществляйте сочетанием клавиш Ctrl+G).

Синтаксис директивы . DEFINE имеет следующий вид:

.DEFINE A B

где А — любая переменная, заданная пользователем, причём в качестве имени переменной нельзя использовать числа и переменные уже использованные системой моделирования «Micro-Cap»; В — числовое значение или функциональная запись.

Для указанных выше числовых параметров используем обозначения, реализованные для НИПН в «Micro-Cap»: $U_1 - v1$; $U_2 - v2$; $t_0 - td$; $\tau_1 - tr$; $\tau_2 - tf$; $\tau_u - pw$; $T_{nob} - per$.

Затем используем директиву .DEFINE для задания числовых значений:

- .DEFINE v1 1
- .DEFINE v2 -1
- .DEFINE td 1e-5
- .DEFINE tr 0
- .DEFINE tf 0
- .DEFINE pw 1e-5
- .DEFINE per 2e-5

После того как числовые параметры определены, необходимо их сопоставить с параметрами НИПН. Для этого введём новую функцию Funct1 и опишем её с помощью директивы . DEFINE следующим образом:

.DEFINE Funct1 PULSE v1 v2 td tr tf pw per

Структура ГМП для реализации процесса $\Pi_1(t)$ приведена на рис. 2, а графики временной [v(1)], спектральной [as(v(1))] и корреляционной [ac(v(1))] характеристик представлены на рис. 3.

Рис. 3

4.1.3. ГМП по псевдослучайному закону формирует биполярный код П₂(*t*), представляющий собой ПСП, которая может быть сформирована несколькими вариантами.

При формировании ПСП, представляющей собой псевдослучайный бинарный код, на основе апериодической М-последовательности используется рекуррентный алгоритм. ПСП соответствует кодовой последовательности максимальной длины, состоящей из $L = 2^n - 1$ элементов, когда $L \ge \text{ent}[T_c/T_3]$, где T_c длительность сеанса наблюдения; n — количество элементов памяти D.

Алгоритм образования М-последовательности реализуется с помощью регистра сдвига с обратной связью [1, 2], структура которого приведена на рис. 4.

ГМП в виде ПСП включает в себя: Γ_{π} — генератор запуска; D — элементы памяти с единственным входом и выходом; { $\alpha_1, \alpha_2, ..., \alpha_n$ } — элементы последовательности, обеспечивающие переключение обратной связи; M2 — сумматоры по модулю 2.

Описание особенностей формирования МП $\Pi_2(t)$ на основе использования НИПН приводится в работе [3]. Однако использование НИПН при больших количествах элементов N в ПСП или большом времени наблюдения T_c нецелесообразно из-за громоздкости формулировки задания и ограниченных возможностей системы «Місго-Сар».

19

4.1.4. ГМП на основе использования кода Баркера формирует процесс $\Pi_3(t)$. Сигналы, база *В* которых изменяется в соответствии с кодом Баркера, являются уникальными ФМС. Модуль их функции автокорреляции имеет минимально достижимый уровень боковых лепестков, равный 1/B.

Для известных в настоящее время кодов Баркера с базой $B \in [5, 7, 11, 13]$ последовательность амплитуд выглядит следующим образом:

$$A_5 \in [1, 1, 1, -1, 1];$$

$$A_7 \in [1, 1, 1, -1, -1, 1, -1];$$

$$A_{11} \in [1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1];$$

$$A_{13} \in [1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1].$$

ГМП, формирующий процесс $\Pi_3(t)$, может быть реализован в нескольких вариантах.

Структура первого варианта ГМП, формирующего код Баркера при B = 7, приведена на рис. 5, где ГСИ — генератор синхроимпульсов с периодом повторения $T_{\rm n} = BT_{\rm 9}$; ГОИ — генератор одиночных импульсов с длительностью $T_{\rm 9}$; МЛЗ — многоотводная линия задержки; Ин — инверторы; Сум — сумматор.

При $T_c = BT_3$ МП $\Pi_3(t)$ имеет апериодический характер, а при $T_c = MBT_3$, M >> 1, МП $\Pi_3(t)$ имеет периодический характер.

Второй вариант формирования МП $\Pi_3(t)$ основан на функциональных источниках сигналов (ФИ), описанных в пособиях по системе моделирования «Місго-Сар» [4 — 7].

В общем виде нелинейные ФИ сигналов описываются математическими формулами или выражениями, задаваемыми пользователем, т. е. в качестве па-

раметров ФИ вводится функциональная зависимость параметров сигналов и узлов от напряжений и токов схемы.

Рис. 5

Например, выражение 2*sin(2*PI*1E6*t) описывает гармоническое колебание с амплитудой сигнала 2 В и несущей частотой 1 МГц. Обозначение на схеме в системе «Micro-Cap» для ФИ — E1 (см. рис. 6).

Рассмотрим пример построения ГМП на основе использования кода Баркера со следующими параметрами: B = 13; $U_1 = v1 = 1$ B; $U_2 = v2 = 0$ B; $T_3 = tib = 10^{-5}$ c; $t_0 = t0 = 10^{-5}$ c; $T_{mog} = 10BT_3 = 1,3 \cdot 10^{-3}$ c.

С помощью директивы . DEFINE задаём числовые значения и описываем функцию Funct2, реализующую псевдослучайную последовательность 13-разрядного кода Баркера следующим образом:

```
.define v1 1
.define v2 -1
.define tib 1e-5
.define t0 1e-5
.define funct2 v1*(t>=t0 and
t<=t0+2*tib)+v1*(t>=t0+2*tib and
t<=t0+3*tib)+v1*(t>=t0+3*tib and
t<=t0+4*tib)+v1*(t>=t0+4*tib and
t<=t0+5*tib)+v2*(t>=t0+5*tib and
t<=t0+6*tib)+v2*(t>=t0+6*tib and
t<=t0+7*tib)+v1*(t>=t0+7*tib and
t<=t0+8*tib)+v1*(t>=t0+8*tib and
t<=t0+9*tib)+v2*(t>=t0+9*tib and
```

```
t<=t0+10*tib)+v1*(t>=t0+10*tib and
t<=t0+11*tib)+v2*(t>=t0+11*tib and
t<=t0+12*tib)+v1*(t>=t0+12*tib and t<=t0+13*tib)</pre>
```

Замечание. В параметрах ФИ в качестве значения (Value) указываем имя вышеописанной функции — Funct2.

Структура ГМП для процесса $\Pi_3(t)$ приведена на рис. 6, а временное, спектральное и корреляционное представление процесса $\Pi_3(t)$ — на рис. 7.

Рис. 6

4.1.5. ГМП на основе использования кодовых М-последовательностей формирует процесс $\Pi_4(t)$. Особенности формирования кодовых М-последовательностей в общем виде на основе использования цифровых автоматов рассмотрены в подразд. 4.1.3.

Количество используемых в ГМП элементов памяти (триггеров) n зависит от требуемой базы МП П₄(t) и определяется из условия $B = L = 2^n - 1$.

Выбор соединений отводов сдвигающего регистра в цепи обратной связи для получения максимального периода МП $\Pi_4(t)$ при заданном числе разрядов регистра и основании системы счисления осуществляется с помощью таблиц неприводимых многочленов.

Приведём пример построения ГМП для характеристического полинома $\varphi(x) = x^3 + x + 1$, в соответствии с которым имеем следующие значения коэффициентов в цепи обратной связи: $\alpha_1 = 1$, $\alpha_2 = 0$, $\alpha_3 = 1$ [2].

Структура ГМП приведена на рис. 8.

Рис. 8

Для данного случая МП $\Pi_4(t)$ имеет B = 7 и кодовую последовательность вида {0100111}.

Для интервала наблюдения $T_c = BT_3$ МП П₄(*t*) является апериодической, а при увеличении интервала наблюдения до $T_c = MBT_3$ она становится периодической.

В рамках данного цикла лабораторных работ, наряду с приведённым выше характеристическим полиномом для ФМС с B = 7, используются характеристические полиномы [1]

 $\varphi(x) = x^4 + x^3 + 1$ для ФМС с B = 15; $\varphi(x) = x^5 + x^2 + 1$ для ФМС с B = 31.

4.1.6. Этапы выполнения лабораторной работы приводятся ниже.

В соответствии с заданным номером варианта исходных данных следует:

1) составить модели ГМП и произвести установку их основных параметров;

2) промоделировать в режиме «Временной анализ»¹ МП и зафиксировать результаты на графиках;

3) промоделировать в режиме «Спектральный анализ»² энергетические спектры МП и зафиксировать их на графиках;

4) промоделировать в режиме «Корреляционный анализ»³ автокорреляционные функции МП и зафиксировать их на графиках;

5) произвести сравнительный анализ результатов моделирования с теоретическими расчётами, проведёнными в ходе выполнения домашнего задания, и обосновать основные параметры моделирования.

Временной анализ после редактирования схемы осуществляется в системе «Micro-Cap» с помощью команды Analysis → Transient.

Параметры моделирования в окне временного анализа (Transient Analysis Limits) установить следующим образом:

1) в поле «*Time Range*» указать время анализа моделирования $T_{\text{мод}} = t_{\text{max}}$ [, t_{min}], где t_{min} — значение минимального времени анализа (указывать необязательно);

2) в поле «*P*» указать номер графика (установка одинаковых цифр для разных графиков приведёт к их построению на одном рисунке);

3) в поле «*X Expression*» задать переменную времени — **T**;

4) в поле «*Y Expression*» задать переменную напряжения на исследуемом узле схемы, например, для узла A переменная обозначается как V(A). Система «Micro-Cap» все узлы на схемах пронумеровывает автоматически. Также для

¹ Временной анализ — это анализ переходных процессов, который осуществляется при выполнении команды программы «Micro-Cap» <u>T</u>ransient... из меню <u>A</u>nalysis. На оси абсцисс (*X Expression*) следует указать переменную времени T, а переменной оси ординат (*Y Expression*) является узловое напряжение, обозначаемое V(номер узла схемы), например: V(1) — напряжение на первом узле схемы.

² Спектральный анализ — это анализ спектральной функции, который осуществляется при выполнении команды программы «Micro-Cap» <u>T</u>ransient... из меню <u>A</u>nalysis. На оси абсцисс (*X Expression*) следует указать переменную с частотой F, а в качестве переменной оси ординат (*Y Expression*) — спектральную функцию узлового напряжения, обозначаемую как AS(V(homep yz) схемы)), например: AS(V(1)) — спектральная функция напряжения первого узла схемы.

³ Корреляционный анализ — это анализ корреляционной функции, который осуществляется при выполнении команды программы «Micro-Cap» <u>T</u>ransient... из меню <u>A</u>nalysis. На оси абсцисс (*X Expression*) следует указать переменную времени T, а в качестве переменной оси ординат (*Y Expression*) — корреляционную функцию узлового напряжения, обозначаемого как AC(V(номер узла схемы)), например: AC(V(1)) — корреляционная функция напряжения первого узла схемы.

узлов схем возможно назначение имён. Например, выходное напряжение для схемы, представленной на рис. 9, а, определяется первым узлом 1 в схеме и может быть обозначено V(1), а на рис. 9, б этот же узел обозначен именем **out**, и напряжение обозначается V(out).

Рис. 9

Вставка имени узла осуществляется при щелчке указателя мыши в нужном месте схемы в режиме *Text mode* (Ctrl+T). При вводе имени узла не допускается использование чисел, переменных и функций, используемых системой «Micro-Cap». Использование цифр в качестве обозначений узлов для сложных схем нежелательно, поскольку каждый раз после внесения изменений и дополнений в состав схемы «Micro-Cap» осуществляет пересчёт всех узлов, а имена узлов схемы остаются неизменными;

5) в полях «*X* Range» и «*Y* Range» определить пределы значений в следующем виде: <максимальное>[,<минимальное>[,<шаг 1-й сетки>[,<шаг 2-й сетки >]]], значения в квадратных скобках указывать необязательно.

Замечание. Если графики после выполнения моделирования отображаются некорректно, например у кривых ломаные края, у прямоугольных импульсов — трапецеидальный вид и т. д., то укажите в поле «*Maximum Time Step*» значение в соответствии с условием 0 < [новое значение Maximum TimeStep] < 1, при этом уменьшайте его для регулировки точности отображения кривых.

Значение в поле «*Maximum Time Step*» определяет максимальный шаг времени моделирования. При этом программно «Micro-Cap» выбирает наибольший шаг времени, насколько это возможно, обеспечивая допустимый предел ошибки, задаваемый параметром RELTOL (Options \rightarrow Global Settings). Точность вычислений управляется значением ошибки округления временного шага моделирования, значение которого по умолчанию определяется как ($t_{max} - t_{min}$)/50.

Параметр RELTOL определяет относительную погрешность аппроксимации графических зависимостей. В системе «Micro-Cap» используются два значения RELTOL: 0,001 или 0,01. При выполнении спектрального анализа необходимо задать время анализа $(T_{\text{мод}})$, использовать функцию **AS(V(1))** — получение собственного спектра сигналов исследуемых генераторов сигналов и на оси X указать **F** (частоту).

Спектральный анализ после редактирования схемы осуществляется в системе «Micro-Cap» с помощью команды Analysis → Transient. Параметры моделирования в окне временного анализа (Transient Analysis Limits) следует установить следующим образом:

1) в поле «*Time Range*» указать время анализа моделирования *T*_{мод};

2) в поле «*X Expression*» задать переменную частоты **F**;

3) в поле «*Y Expression*» задать функцию собственного спектра сигналов в соответствии с рис. 9, а — AS(V(1)) и для 9, б — AS(V(out)).

Корреляционный анализ после редактирования схемы осуществляется по команде Analysis \rightarrow Transient. Параметры моделирования в окне временного анализа (Transient Analysis Limits) установить следующим образом:

1) в поле «*Time Range*» указать время анализа моделирования *T*_{мод};

2) в поле «*X Expression*» задать переменную времени **T**;

3) в поле «*Y Expression*» необходимо задать функцию автокорреляции в соответствии с рис. 9, а — AC(V(1)) и для 9, б — AC(V(out)).

4.2. Лабораторная работа № 2

«Моделирование генераторов простых двухпозиционных ФМС»

4.2.1. Целью работы является изучение методов анализа и моделирования временных, спектральных и корреляционных характеристик генераторов простых двухпозиционных ФМС при использовании МП, формируемых в виде меандра $S_1(t)$ и ПСП $S_2(t)$.

4.2.2. Генераторы простых двухпозиционных ФМС формируют сигналы в результате балансной модуляции МП гармонического колебания. Структура такого генератора приведена на рис. 10, где Γ_f — генератор несущего колебания; ГМП — генератор МП; П — перемножитель; $S_{\phi MC}(t)$ — ФМС.

При проведении лабораторной работы № 2 модели Γ_f и П могут быть заимствованы из библиотеки компонентов системы «Micro-Cap», а формирование моделей МП $\Pi_1(t)$ и $\Pi_2(t)$ описаны в подразд. 4.1.2 и 4.1.3.

Рис. 10

4.2.3. Этапы выполнения лабораторной работы № 2 соответствуют этапам выполнения лабораторной работы № 1, описание которых приведено в подразд. 4.1.6. Отличие состоит в том, что объектом исследований вместо МП $\Pi_1(t)$ и $\Pi_2(t)$ являются ФМС $S_1(t)$ и $S_2(t)$.

4.3. Лабораторная работа № 3 «Моделирование генераторов сложных двухпозиционных ФМС с апериодическими МП»

4.3.1. Целью работы является изучение методов анализа и моделирования временных, спектральных и корреляционных характеристик генераторов сложных двухпозиционных ФМС с апериодическими МП на основе использования кодов Баркера $S_{3a}(t)$ и кодовых М-последовательностей $S_{4a}(t)$.

4.3.2. Структура генераторов сложных двухпозиционных ФМС с апериодическими МП приведена на рис. 10. Модели апериодических МП $\Pi_{3a}(t)$ и $\Pi_{4a}(t)$ описаны в подразд. 4.1.4 и 4.1.5.

4.3.3. Этапы выполнения лабораторной работы № 3 соответствуют этапам выполнения лабораторной работы № 1, описание которых приведено в подразд. 4.1.6. Отличие состоит в том, что объектом исследований вместо МП $\Pi_{3a}(t)$ и $\Pi_{4a}(t)$ являются ФМС $S_{3a}(t)$ и $S_{4a}(t)$.

4.4. Лабораторная работа № 4 «Моделирование генераторов сложных двухпозиционных ФМС с периодическими МП»

4.4.1. Целью работы является изучение методов анализа и моделирования временных, спектральных и корреляционных характеристик генераторов сложных двухпозиционных ФМС с периодическими МП на основе использования кодов Баркера $S_{3\pi}(t)$ и кодовых М-последовательностей $S_{4\pi}(t)$.

4.3.2. Структура генераторов сложных двухпозиционных ФМС с периодическими МП приведена на рис. 10. Модели апериодических МП $\Pi_{3\pi}(t)$ и $\Pi_{4\pi}(t)$ описаны в подразд. 4.1.4 и 4.1.5.

4.3.3. Этапы выполнения лабораторной работы № 4 соответствуют этапам выполнения лабораторной работы № 1, описание которых приведено в подразд. 4.1.6. Отличие состоит в том, что объектом исследований вместо МП $\Pi_{3\pi}(t)$ и $\Pi_{4\pi}(t)$ являются ФМС $S_{3\pi}(t)$ и $S_{4\pi}(t)$.

4.5. Варианты исходных данных к лабораторным работам № 1—4

4.5.1. Общие данные для всех лабораторных работ: |A| = 1 B; $U_m = 1$ B; $t_0 = T_{2}$.

4.5.2. Варианты исходных данных к лабораторным работам № 1—4 приведены в табл. 3 и 4.

Таблица 3

№ п/п	Наименование параметров ФМС	Индексация и значения параметров ФМС
1	Тип МП	1.1 — $\Pi_1(t)$; 1.2 — $\Pi_2(t)$; 1.3 — $\Pi_{3a}(t)$; 1.4 — $\Pi_{4a}(t)$; 1.5 — $\Pi_{3n}(t)$; 1.6 — $\Pi_{4n}(t)$
2	$T_{3}(c)$ — длительность элемента	2.1 — $T_3 = 10^{-3}$; 2.2 — $T_3 = 10^{-4}$; 2.3 — $T_3 = 10^{-5}$; 2.4 — $T_3 = 10^{-6}$
3	$T_{\rm MII}(c)$ — длительность кодового интервала	$3.1 - T_{\text{MII}} = 10T_{3}; \ 3.2 - T_{\text{MII}} = 15T_{3};$ $3.3 - T_{\text{MII}} = 20T_{3}; \ 3.4 - T_{\text{MII}} = 25T_{3}$
4	Тип ФМС	4.1 — $S_1(t)$; 4.2 — $S_2(t)$; 4.3 — $S_{3a}(t)$; 4.4 — $S_{4a}(t)$; 4.5 — $S_{3n}(t)$; 4.6 — $S_{4n}(t)$
5	$f_{\rm c}$ (Гц) — несущая частота ФМС	5.1 $-f_c = 10/T_3$; 5.2 $-f_c = 15/T_3$; 5.3 $-f_c = 20/T_3$; 5.4 $-f_c = 25/T_3$
6	<i>В</i> — база сложных сигналов ФМС	6.1 - B = 7; 6.2 - B = 11; 6.3 - B = 13; 6.4 - B = 15; 6.5 - B = 31
7	<i>М</i> — количество кодовых интервалов МП в сложных ФМС	7.1 — $M = 1; 7.2 - M = 10;$ 7.3 — $M = 20; 7.4 - M = 30$

Варианты исходных данных к лабораторным работам № 1—4

Denveyar	Лабораторная	Лабораторная	Лабораторная	Лабораторная
Барианты	работа № 1	работа № 2	работа № 3	работа № 4
1	1 1 2 1 2 1	A 1 · 2 1 · 2 1 · 5 1	4.3; 2.1; 3.1; 5.1;	4.5; 2.1; 3.1; 5.1;
1	1.1, 2.1, 3.1	4.1, 2.1, 5.1, 5.1	6.1; 7.1	6.1; 7.2
2	1 2 2 1 2 1	1 2 2 1 2 1 5 1	4.4; 2.1; 3.1; 5.1;	4.6; 2.1; 3.1; 5.1;
	1.2, 2.1, 3.1	4.2, 2.1, 3.1, 3.1	6.1; 7.1	6.1; 7.2
2	1 2 2 1 2 1	1 1 . 2 1 . 2 1 . 5 1	4.3; 2.1; 3.2; 5.1;	4.5; 2.1; 3.2; 5.1;
	1.5, 2.1, 5.1	4.1, 2.1, 3.1, 3.1	6.1; 7.1	6.1; 7.3
Λ	1 4. 2 1. 2 1	1 2 2 1 2 1 5 1	4.4; 2.2; 3.1; 5.1;	4.6; 2.2; 3.1; 5.1;
4	1.4, 2.1, 3.1	4.2, 2.1, 3.1, 3.1	6.1; 7.1	6.1; 7.3
5	$1.5 \cdot 2.1 \cdot 2.1$	1 1 . 2 1 . 2 1 . 5 1	4.3; 2.1; 3.1; 5.1;	4.5; 2.1; 3.1; 5.1;
	1.3, 2.1, 3.1	4.1, 2.1, 5.1, 5.1	6.2; 7.1	6.2; 7.4
6	1.6.21.31	$12 \cdot 21 \cdot 31 \cdot 51$	4.4; 2.1; 3.1; 5.2;	4.6; 2.1; 3.1; 5.2;
0	1.0, 2.1, 5.1	4.2, 2.1, 5.1, 5.1	6.1; 7.1	6.1; 7.4
7	$1 1 \cdot 2 2 \cdot 3 2$	$A 1 \cdot 2 2 \cdot 3 2 \cdot 5 2$	4.3; 2.2; 3.2; 5.2;	4.5; 2.2; 3.2; 5.2;
/	1.1, 2.2, 3.2	4.1, 2.2, 3.2, 3.2	6.2; 7.1	6.2; 7.2
8	$1 2 \cdot 2 2 \cdot 3 2$	1 2 2 2 2 3 2 5 2	4.4; 2.2; 3.2; 5.2;	4.6; 2.2; 3.2; 5.2;
0	1.2, 2.2, 5.2	4.2, 2.2, 5.2, 5.2	6.2; 7.1	6.2; 7.3
9	1 3. 2 2. 3 2	$4 1 \cdot 2 2 \cdot 3 2 \cdot 5 2$	4.3; 2.2; 3.2; 5.1;	4.4; 2.2; 3.2; 5.1;
,	1.5, 2.2, 5.2	4.1, 2.2, 5.2, 5.2	6.2; 7.1	6.2; 7.3
10	$1 4 \cdot 2 2 \cdot 3 2$	4 2 . 2 2 . 3 2 . 5 2	4.4; 2.2; 3.2; 5.2;	4.6; 2.2; 3.2; 5.2;
10	1.7, 2.2, 3.2	4.2, 2.2, 5.2, 5.2	6.1; 7.1	6.1; 7.4
11	1 5 2 3 3 3	41.22.32.52	4.3; 2.2; 3.3; 5.2;	4.5; 2.2; 3.3; 5.2;
11	1.5, 2.5, 5.5	1.1, 2.2, 5.2, 5.2	6.2; 7.1	6.2; 7.2
12	16.23.33	4 2 2 2 3 2 5 2	4.4; 2.2; 3.4; 5.2;	4.6; 2.2; 3.4; 5.2;
12	1.0, 2.3, 5.5	1.2, 2.2, 5.2, 5.2	6.2; 7.1	6.2; 7.3
13	$1 1 \cdot 2 3 \cdot 3 3$	4 1 • 2 3 • 3 3 • 5 3	4.3; 2.3; 3.3; 5.3;	4.5; 2.3; 3.3; 5.3;
	1.1, 2.3, 5.3	1.1, 2.5, 5.5, 5.5	6.3; 7.1	6.3; 7.4
14	$12 \cdot 23 \cdot 33$	4 2 2 3 3 3 5 3	4.4; 2.3; 3.3; 5.3;	4.6; 2.3; 3.3; 5.3;
	1.2, 2.0, 0.0		6.2; 7.1	6.2; 7.2
15	1.3: 2.4: 3.4	4.1: 2.3: 3.3: 5.3	4.3; 2.4; 3.4; 5.3;	4.5; 2.4; 3.4; 5.3;
	,,	,,,	6.3; 7.1	6.3; 7.3
16	1.4: 2.4: 3.4	4.2: 2.4: 3.4: 5.4	4.4; 2.2; 3.2; 5.3;	4.6; 2.2; 3.2; 5.3;
	. , ,	. , . , ,	6.3; 7.1	6.3; 7.4
17	1.5; 2.4; 3.4	4.1; 2.4; 3.4; 5.4	4.3; 2.1; 3.1; 5.3;	4.5; 2.1; 3.1; 5.3;
	, - ,	. , . , ,	6.1; 7.1	6.1; 7.3
18	1.6; 2.4; 3.4	4.2; 2.4; 3.4; 5.4	4.4; 2.4; 3.4; 5.1;	4.6; 2.4; 3.4; 5.1;
1	· · ·	, , , , .	6.2:7.1	62.74

Варианты исходных данных к лабораторным работам № 1-4

4.6. Отчёты по лабораторным работам

В соответствии с заданным вариантом составляются отчеты по контрольной и лабораторным работам.

Отчет по лабораторной работе должен содержать:

- результаты выполнения лабораторной работы;

- сравнительный анализ лабораторных исследований с теоретическими расчетами;
- выводы по работе.

Контрольные вопросы для самоаттестации

- 1. Какие сигналы называют дискретными, цифровыми, аналоговыми, континуальными?
- Что называют базой сигнала и как связана база сигнала с частотными и временными характеристиками сигнала?
- 3. Чем отличается амплитудный спектр сигнала от его энергетического спектра?
- 4. Какие сигналы называют ортогональными?
- 5. Что собой представляет б-функция и каковы её свойства?
- 6. Что следует понимать под шириной спектра сигнала?
- 7. Запишите выражение прямого преобразования Фурье некоторой функции времени x(t). Запишите выражение обратного преобразования Фурье.
- 8. Какими свойствами обладает «белый шум», какой вид имеет его автокорреляционная функция?
- 9. Как связаны длительность видеоимпульса и ширина его спектра?
- 10.Как отличаются спектры видео- и радиоимпульсов одинаковой формы, длительности и амплитуды?
- 11. Как выглядит автокорреляционная функция прямоугольного видеоимпульса, прямоугольного радиоимпульса?
- 12.Какие сигналы называют сложными и каковы их главные общие свойства?
- 13.Как связаны между собой фаза гармонического сигнала и его циклическая частота?
- 14.В чем заключается отличительное свойство эргодического случайного процесса?
- 15.Как, зная энергетический спектр стационарного случайного процесса, вычислить его среднеквадратическое значение?
- 16.Как определяется понятие одностороннего энергетического спектра стационарного случайного процесса?

- 17. Что такое импульсная характеристика линейной цепи? Что такое переходная характеристика линейной цепи? Какова их взаимосвязь?
- 18.Запишите выражения, описывающие переходные характеристики дифференцирующей и интегрирующей RC-цепей.
- 19.Как принято определять ширину полосы пропускания узкополосных электрических цепей?
- 20.Какой смысл, абсолютный или относительный, вкладывается в понятие «широкополосный сигнал»?
- 21. Дайте классификацию сигналов по различным классификационным признакам.
- 22. Дайте определение корреляционной функции и перечислите ее основные свойства.
- 23. Какова размерность спектральной плотности мощности?
- 24. Сформулируйте теорему Котельникова.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Варакин Л. Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 с.
- 2. *Тузов Г. И.* Статистическая теория приёма сложных сигналов. М.: Сов. радио, 1977. 400 с.
- Дятлов А. П., Дятлов П. А. Анализ и моделирование демодуляторов сигналов: Методические указания к лабораторно-практическим занятиям. — Таганрог: ТРТУ, 2003. — 83 с. № 3500.
- 4. Разевиг В. Д. Система схемотехнического моделирования «Місго-Сар V».
 М.: Солон, 1997. 273 с.
- *Разевиг В. Д.* Система схемотехнического моделирования «Micro-Cap VI». — М.: Горячая линия — Телеком, 2001. — 344 с.
- 6. *Разевиг В. Д.* Система схемотехнического моделирования «Місго-Сар VII». — М.: Горячая линия — Телеком, 2003. — 368 с.
- 7. Дятлов П. А. Руководство пользователя пакета прикладных программ «Micro-Cap»: Методические указания к лабораторно-практическим занятиям. Таганрог: ТРТУ, кафедра РТС (http://www.rts.tsure.ru/mc_v.pdf), 2002. 64 с.

Дятлов Анатолий Павлович Дятлов Павел Анатольевич

Руководство к циклу лабораторных работ МОДЕЛИРОВАНИЕ ГЕНЕРАТОРОВ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ

Для студентов специальностей 210304 «Радиоэлектронные системы», 210304 «Средства связи с подвижными объектами» всех форм обучения

Ответственный за выпуск Редактор Корректор Компьютерная вёрстка Дятлов А. П. Маныч Э. И. Проценко И. А. Дятлов П. А.

ЛР № 020565 от 25 июня 1997 г. Подписано к печати 21.03.2006 г. Формат 60×84¹/₁₆. Бумага офсетная. Офсетная печать. Усл. п.л. — 2,0. Уч.-изд. л. — 1,9. Заказ № Тираж 250 экз. «С»

Издательство Таганрогского государственного радиотехнического университета ГСП 17А, Таганрог, 28, Некрасовский, 44 Типография Таганрогского государственного радиотехнического университета ГСП 17А, Таганрог, 28, Энгельса, 1